84 research outputs found

    Global asymptotic stability of nonlinear cascade systems

    Get PDF
    AbstractIn this paper, we give a new, quick proof for a known result on the global asymptotic stability of continuous-time nonlinear cascade systems. Next, we state and prove a similar result for the global asymptotic stability of discrete-time nonlinear cascade systems

    On the Role of Context in the Design of Mobile Mashups

    Get PDF
    This paper presents a design methodology and an accompanying platform for the design and fast development of Context-Aware Mobile mashUpS (CAMUS). The approach is characterized by the role given to context as a first-class modeling dimension used to support i) the identification of the most adequate resources that can satisfy the users' situational needs and ii) the consequent tailoring at runtime of the provided data and functions. Context-based abstractions are exploited to generate models specifying how data returned by the selected services have to be merged and visualized by means of integrated views. Thanks to the adoption of Model-Driven Engineering (MDE) techniques, these models drive the flexible execution of the final mobile app on target mobile devices. A prototype of the platform, making use of novel and advanced Web and mobile technologies, is also illustrated

    Molecular Dynamics Simulation Study and Hybrid Pharmacophore Model Development in Human LTA4H Inhibitor Design

    Get PDF
    Human leukotriene A4 hydrolase (hLTA4H) is a bi-functional enzyme catalyzes the hydrolase and aminopeptidase functions upon the fatty acid and peptide substrates, respectively, utilizing the same but overlapping binding site. Particularly the hydrolase function of this enzyme catalyzes the rate-limiting step of the leukotriene (LT) cascade that converts the LTA4 to LTB4. This product is a potent pro-inflammatory activator of inflammatory responses and thus blocking this conversion provides a valuable means to design anti-inflammatory agents. Four structurally very similar chemical compounds with highly different inhibitory profile towards the hydrolase function of hLTA4H were selected from the literature. Molecular dynamics (MD) simulations of the complexes of hLTA4H with these inhibitors were performed and the results have provided valuable information explaining the reasons for the differences in their biological activities. Binding mode analysis revealed that the additional thiophene moiety of most active inhibitor helps the pyrrolidine moiety to interact the most important R563 and K565 residues. The hLTA4H complexes with the most active compound and substrate were utilized in the development of hybrid pharmacophore models. These developed pharmacophore models were used in screening chemical databases in order to identify lead candidates to design potent hLTA4H inhibitors. Final evaluation based on molecular docking and electronic parameters has identified three compounds of diverse chemical scaffolds as potential leads to be used in novel and potent hLTA4H inhibitor design

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Analysis and Anti-Synchronization of a Novel Chaotic System via Active and Adaptive Controllers

    No full text
    Anti-synchronization of chaotic systems deals with the problem of asymptotically synchronizing the sum of states of a pair of chaotic systems called master and slave systems with the help of controllers attached to the slave system. When two chaotic systems are anti-synchronized, then their states are asymptotically equal in magnitude, but opposite in phase. Anti-synchronization of chaotic systems has applications in many engineering areas such as secure communications, secure data encryption, cryptosystems, etc. This paper announces a novel 3-D chaotic system and describes its qualitative properties. Next, this paper deals with the design of active and adaptive controllers for synchronizing the states of identical novel chaotic systems. Active controllers are used when the system parameters are available for measurement and the synchronization result is established using Lyapunov stability theory. Adaptive controllers are used when the system parameters are unknown. In this case, estimates are used in lieu of the unknown system parameters and adaptive controllers are designed using adaptive control theory and Lyapunov stability theory. Numerical simulations using MATLAB have been shown to demonstrate the proposed active and adaptive synchronization results for novel chaotic systems

    Output Regulation of the Pan System

    Get PDF

    A counterexample for the global separation principle for discrete-time nonlinear systems

    Get PDF
    AbstractIn the control systems literature, it is well known that a separation principle holds locally for nonlinear control systems, when exponential feedback stabilizers and exponential observers are used. In this paper, we present a counterexample to show that the global separation principle need not hold for nonlinear control systems. Our example demonstrates that global stability might be lost when an exponential observer is introduced into the nonlinear feedback loop associated with an exponentially stabilizing feedback control law
    corecore